

Feals 1200mg Lab Tests.

At Feals, our goal is to produce the purest end product as possible. In order to do so, we test your CBD at each step of our production process.

Lot Number: 19112V1

TEST 1

Hemp Test

Our American grow partners sign an affidavit ensuring organic farming practices are used, before their initial test to validate no traces of any 60 potentially harmful pesticides are found, and that THC levels are below the 0.3% limit required by law.

✓ Under legal limit of 0.3% THC

TEST 2

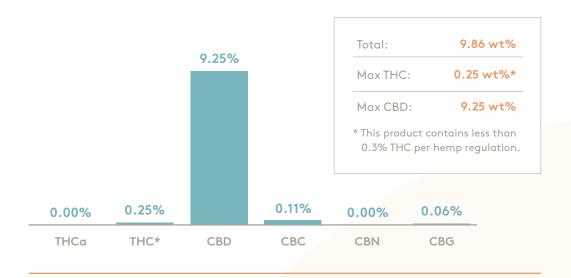
Extraction Test

Once the plants pass the partner's quality assurance, they are brought to our CO₂ extraction facility. Here, the oil is retested for the 0.3% limit and goes through a comprehensive profile and potency test to determine the plant's unique cannabinoid makeup.

Cannabinoid Profile Test

✓ Under legal limit of 0.3% THC

TEST 3


Final Test

Before being shipped to your door, we ensure the accuracy of our partner tests by sending each batch through a final test of quality, profile, and potency. A summary of that test is summarized below and the actual results are on the following pages.

All previous tests

taken one last time

Cannabinoid Profile & Potency

Certificate of Analysis

Batch #: 19112V1 Sample #: AAAA313

Specimen Type: CBD/HEMP Derivative Products Extracted From: Hemp

Description: Full Spec CBD + Organic MCT Oil

Density: .94226g/ml Method: SOP-3

Potency Tested	Residual Solvents Passed	Heavy Metals Passed		
Mycotoxins Passed	Water Activity Passed	Terpenes Tested		
Pesticides Passed	Pesticides Passed	Microbiology (qPCR) Passed		
Listeria Tested	Filth and Foreign Material Passed			

CBD Total 9.251% THC Total 0.252%

CBG Total 0.062%

CBN Total Not Detected Other Cannabinoids Total 0.220% Total Detected Cannabinoids 9.785%

Potency - 11 (Tested) (HPLC) Result Result Result Analyte (mg/ml) (%) Analyte (mg/ml) Analyte (mg/ml) (%) 0.996 0.106 0.001 9.251 0.001 **CBDA** <LOQ 0.001 CBC 87.168 CBDV <LOQ 0.816 0.087 0.001 0.582 0.062 0.001 CBGA 0.001 CBN <L0Q 0.001 Delta-8-THC <L0Q 0.001 Delta-9-THC 2.375 0.252 0.001 THCA-A <LOQ 0.001 THCV 0.263 0.028 0.001 Total CBD 87.168 9.251 0.001 **Total THC** 2.375 0.252 0.001

*Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A (mg/ml) = Milligrams per Milliliter, , LOQ = Limit of Quantitation

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Certificate of Analysis

Order #: FEA191205-030006 **Order Date**: 2019-12-05 **Collection Date**: 2019-12-13 **Report Date**: 2019-12-20

Batch #: 19112V1 **Sample** #: AAAA313

Specimen Type: CBD/HEMP Derivative Products Extracted From: Hemp Description: Full Spec CBD + Organic MCT Oil

Density: .94226g/ml Method: SOP-3

(GC/GCMS) Residual Solvents (Extract Only) (Passed) Action Action LOO Result Result Result LOO Level Level Level Analyte Analyte (ppm) Analyte (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) Acetone 5000 <LOQ 87.9 Benzene 1.6 <L0Q 1.6 Chloroform 53 <LOQ 53 **Ethanol** 5000 <LOQ 26.7 Hexane <L0Q 36.6 I-Butane 5000 <LOQ 100 60 3000 5000 <LOQ 52.3 Methanol <LOQ 87.9 **N-Butane** 5000 <LOQ 200 Isopropanol 5000 <LOQ 389.5 Toluene 890 <LOQ 38.4 Pentane

(ppm) = Parts per Million, (ppm) = $(\mu g/g)$, , LOQ = Limit of Quantitation

Heavy Metals	(Passe	d)								(10	CP-MS)
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Arsenic (As)	200	<l0q< th=""><th>100</th><th>Cadmium (Cd)</th><th>200</th><th><l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<></th></l0q<>	100	Cadmium (Cd)	200	<l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<>	100	Lead (Pb)	500	<l0q< th=""><th>100</th></l0q<>	100
Mercury (Hg)	100	<l0q< th=""><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<>	100								

(ppb) = Parts per Billion, (ppb) = (µg/kg), , LOQ = Limit of Quantitation

Mycotoxins	(Passed))								(LCN	MS/MS)
	Action	D It	1.00		Action	D Is			Action	December	100
Analyte	Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Level (ppb)	Result (ppb)	LOQ (ppb)
Aflatoxin B1		<loq< th=""><th>6</th><th>Aflatoxin B2</th><th></th><th><l0q< th=""><th>6</th><th>Aflatoxin G1</th><th></th><th><l0q< th=""><th>6</th></l0q<></th></l0q<></th></loq<>	6	Aflatoxin B2		<l0q< th=""><th>6</th><th>Aflatoxin G1</th><th></th><th><l0q< th=""><th>6</th></l0q<></th></l0q<>	6	Aflatoxin G1		<l0q< th=""><th>6</th></l0q<>	6
Aflatoxin G2		<l0q< th=""><th>6</th><th>Aflatoxin Total</th><th>20</th><th><l0q< th=""><th>6</th><th>Ochratoxin A</th><th>20</th><th><l0q< th=""><th>12</th></l0q<></th></l0q<></th></l0q<>	6	Aflatoxin Total	20	<l0q< th=""><th>6</th><th>Ochratoxin A</th><th>20</th><th><l0q< th=""><th>12</th></l0q<></th></l0q<>	6	Ochratoxin A	20	<l0q< th=""><th>12</th></l0q<>	12

(ppb) = Parts per Billion, (ppb) = $(\mu g/kg)$, , LOQ = Limit of Quantitation

mul our

eli Gao Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

mis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

2 of 6

Certificate of Analysis

Batch #: 19112V1 Sample #: AAAA313

Specimen Type: CBD/HEMP Derivative Products Extracted From: Hemp Description: Full Spec CBD + Organic MCT Oil

Density: .94226g/ml Method: SOP-3

Water Activity (Passed)

(AquaLab 4TE)

Analyte	Action Level (aw)	Result (aw)	
Water Activity	0.65	0.286	

(aw) = aw

Terpenes - FL	(Teste	d)								(GC/	GCMS)
Analyte	Result (mg/g)	(%)	LOQ (%)	Analyte	Result (mg/g)	(%)	LOQ (%)	Analyte	Result (mg/g)	(%)	LOQ (%)
(+)-Cedrol		<loq< th=""><th>0.001</th><th>(R)-(+)-Limonene</th><th>0.300</th><th>0.030</th><th>0.001</th><th>3-Carene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></loq<>	0.001	(R)-(+)-Limonene	0.300	0.030	0.001	3-Carene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Alpha-Bisabolol		<loq< th=""><th>0.001</th><th>alpha-Cedrene</th><th></th><th><l0q< th=""><th>0.001</th><th>alpha-Humulene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	alpha-Cedrene		<l0q< th=""><th>0.001</th><th>alpha-Humulene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	alpha-Humulene		<l0q< th=""><th>0.001</th></l0q<>	0.001
alpha- Phellandren-e		<l0q< th=""><th>0.001</th><th>alpha-Pinene</th><th></th><th><l0q< th=""><th>0.001</th><th>alpha-Terpinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	alpha-Pinene		<l0q< th=""><th>0.001</th><th>alpha-Terpinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	alpha-Terpinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
rnenanuren-e		\LUQ	0.001	beta-Myrcene	0.130	0.013	0.001	beta-Pinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Borneol		<loq< th=""><th>0.001</th><th>Camphene</th><th></th><th><l0q< th=""><th>0.001</th><th>Camphors</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Camphene		<l0q< th=""><th>0.001</th><th>Camphors</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Camphors		<l0q< th=""><th>0.001</th></l0q<>	0.001
Caryophyllene oxide		<l0q< th=""><th>0.001</th><th>cis-Nerolidol</th><th></th><th><l0q< th=""><th>0.001</th><th>Eucalyptol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	cis-Nerolidol		<l0q< th=""><th>0.001</th><th>Eucalyptol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Eucalyptol		<l0q< th=""><th>0.001</th></l0q<>	0.001
oxide		\LUQ	0.001	Farnesene		<l0q< th=""><th>0.001</th><th>Fenchone</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Fenchone		<l0q< th=""><th>0.001</th></l0q<>	0.001
Fenchyl Alcohol		<l0q< th=""><th>0.001</th><th>gamma- Terpinene</th><th></th><th><l00< th=""><th>0.001</th><th>Geraniol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l00<></th></l0q<>	0.001	gamma- Terpinene		<l00< th=""><th>0.001</th><th>Geraniol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l00<>	0.001	Geraniol		<l0q< th=""><th>0.001</th></l0q<>	0.001
				reipilielle		LOQ	0.001	Geranyl acetate		<l0q< th=""><th>0.001</th></l0q<>	0.001
Guaiol		<loq< th=""><th>0.001</th><th>Hexahydrothymol</th><th></th><th><l0q< th=""><th>0.001</th><th>Isoborneol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Hexahydrothymol		<l0q< th=""><th>0.001</th><th>Isoborneol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Isoborneol		<l0q< th=""><th>0.001</th></l0q<>	0.001
Isopulegol		<loq< th=""><th>0.001</th><th>Linalool</th><th></th><th><l0q< th=""><th>0.001</th><th>Nerol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Linalool		<l0q< th=""><th>0.001</th><th>Nerol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Nerol		<l0q< th=""><th>0.001</th></l0q<>	0.001
Ocimene		<loq< th=""><th>0.001</th><th>Pulegone</th><th></th><th><l0q< th=""><th>0.001</th><th>Sabinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Pulegone		<l0q< th=""><th>0.001</th><th>Sabinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Sabinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Sabinene Hydrate		<l0q< th=""><th>0.001</th><th>Terpineol</th><th></th><th><l0q< th=""><th>0.001</th><th>Terpinolene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	Terpineol		<l0q< th=""><th>0.001</th><th>Terpinolene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Terpinolene		<l0q< th=""><th>0.001</th></l0q<>	0.001
trans- Caryophylle-ne	0.110	0.011	0.001	trans-Nerolidol		<l0q< th=""><th>0.001</th><th>Valencene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Valencene		<l0q< th=""><th>0.001</th></l0q<>	0.001

(mg/g) = Milligram per Gram, , LOQ = Limit of Quantitation

Xueli Gao

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

mis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Certificate of Analysis

Order #: FEA191205-030006 **Order Date**: 2019-12-05 **Collection Date**: 2019-12-13 **Report Date**: 2019-12-20

Batch #: 19112V1 Sample #: AAAA313

Specimen Type: CBD/HEMP Derivative Products Extracted From: Hemp Description: Full Spec CBD + Organic MCT Oil **Density:** .94226g/ml **Method:** SOP-3

Pesticides (Passed) (LCMS/MS)

Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Abamectin	100	<l0q< th=""><th>28.23</th><th>Acephate</th><th>100</th><th><l0q< th=""><th>30</th><th>Acequinocyl</th><th>100</th><th><l0q< th=""><th>48</th></l0q<></th></l0q<></th></l0q<>	28.23	Acephate	100	<l0q< th=""><th>30</th><th>Acequinocyl</th><th>100</th><th><l0q< th=""><th>48</th></l0q<></th></l0q<>	30	Acequinocyl	100	<l0q< th=""><th>48</th></l0q<>	48
Acetamiprid	100	<l0q< th=""><th>30</th><th>Aldicarb</th><th>100</th><th><l0q< th=""><th>30</th><th>Azoxystrobin</th><th>10</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<></th></l0q<>	30	Aldicarb	100	<l0q< th=""><th>30</th><th>Azoxystrobin</th><th>10</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<>	30	Azoxystrobin	10	<l0q< th=""><th>10</th></l0q<>	10
Bifenazate	100	<l0q< th=""><th>30</th><th>Bifenthrin</th><th>100</th><th><l0q< th=""><th>30_</th><th>Chlorfenapyr</th><th>100</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<></th></l0q<>	30	Bifenthrin	100	<l0q< th=""><th>30_</th><th>Chlorfenapyr</th><th>100</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<>	30_	Chlorfenapyr	100	<l0q< th=""><th>48_</th></l0q<>	48_
Chlorpyrifos	100	<l0q< th=""><th>30</th><th>Clofentezine</th><th>200</th><th><l0q< th=""><th>30</th><th>Coumaphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Clofentezine	200	<l0q< th=""><th>30</th><th>Coumaphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Coumaphos	100	<l0q< th=""><th>30</th></l0q<>	30
Cyfluthrin	100	<l0q< th=""><th>30</th><th>Cypermethrin</th><th>500</th><th><l0q< th=""><th>30</th><th>Daminozide</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Cypermethrin	500	<l0q< th=""><th>30</th><th>Daminozide</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Daminozide	100	<l0q< th=""><th>30</th></l0q<>	30
DDVP(Dichlorvos)	100	<l0q< th=""><th>30</th><th>Diazinon</th><th>100</th><th><l0q< th=""><th>30_</th><th>Dimethoate</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Diazinon	100	<l0q< th=""><th>30_</th><th>Dimethoate</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30_	Dimethoate	100	<l0q< th=""><th>30_</th></l0q<>	30_
Dimethomorph	200	<l0q< th=""><th>30</th><th>Ethoprop(hos)</th><th>100</th><th><l0q< th=""><th>30</th><th>Etofenprox</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Ethoprop(hos)	100	<l0q< th=""><th>30</th><th>Etofenprox</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Etofenprox	100	<l0q< th=""><th>30</th></l0q<>	30
Etoxazole	100	<l0q< th=""><th>30</th><th>Fenhexamid</th><th>100</th><th><l0q< th=""><th>30_</th><th>Fenoxycarb</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Fenhexamid	100	<l0q< th=""><th>30_</th><th>Fenoxycarb</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30_	Fenoxycarb	100	<l0q< th=""><th>30_</th></l0q<>	30_
Fipronil	100	<l0q< th=""><th>30</th><th>Flonicamid</th><th>100</th><th><l0q< th=""><th>30</th><th>Fludioxonil</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Flonicamid	100	<l0q< th=""><th>30</th><th>Fludioxonil</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Fludioxonil	100	<l0q< th=""><th>30</th></l0q<>	30
Hexythiazox	100	<l0q< th=""><th>30</th><th>lmazalil</th><th>100</th><th><l0q< th=""><th>30</th><th>Imidacloprid</th><th>400</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	lmazalil	100	<l0q< th=""><th>30</th><th>Imidacloprid</th><th>400</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Imidacloprid	400	<l0q< th=""><th>30</th></l0q<>	30
Kresoxim Methyl	100	<l0q< th=""><th>30</th><th>Malathion A</th><th>200</th><th><l0q< th=""><th>30</th><th>Metalaxyl</th><th>20</th><th><loq< th=""><th>10</th></loq<></th></l0q<></th></l0q<>	30	Malathion A	200	<l0q< th=""><th>30</th><th>Metalaxyl</th><th>20</th><th><loq< th=""><th>10</th></loq<></th></l0q<>	30	Metalaxyl	20	<loq< th=""><th>10</th></loq<>	10
Methiocarb	50	<l0q< th=""><th>30</th><th>Methomyl</th><th>100</th><th><l0q< th=""><th>30</th><th>Mevinphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Methomyl	100	<l0q< th=""><th>30</th><th>Mevinphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Mevinphos	100	<l0q< th=""><th>30</th></l0q<>	30
Myclobutanil	100	<l0q< th=""><th>30</th><th>Naled</th><th>250</th><th><l0q< th=""><th>30</th><th>Oxamyl</th><th>500</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Naled	250	<l0q< th=""><th>30</th><th>Oxamyl</th><th>500</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Oxamyl	500	<l0q< th=""><th>30</th></l0q<>	30
Paclobutrazol	100	<l0q< th=""><th>30</th><th>Parathion-methyl</th><th>100</th><th><l0q< th=""><th>48</th><th>Pentachloronitrob- enzene</th><th>150</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Parathion-methyl	100	<l0q< th=""><th>48</th><th>Pentachloronitrob- enzene</th><th>150</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	48	Pentachloronitrob- enzene	150	<l0q< th=""><th>30</th></l0q<>	30
Permethrin	100	<l0q< th=""><th>30</th><th>Phosmet</th><th>100</th><th><l0q< th=""><th>30_</th><th>Piperonylbutoxide</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Phosmet	100	<l0q< th=""><th>30_</th><th>Piperonylbutoxide</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30_	Piperonylbutoxide	3000	<l0q< th=""><th>30_</th></l0q<>	30_
Prallethrin	100	<l0q< th=""><th>30</th><th>Propiconazole</th><th>100</th><th><l0q< th=""><th>30_</th><th>Propoxur</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Propiconazole	100	<l0q< th=""><th>30_</th><th>Propoxur</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30_	Propoxur	100	<l0q< th=""><th>30_</th></l0q<>	30_
Pyrethrins	500	<l0q< th=""><th>30_</th><th>Pyridaben</th><th>200</th><th><l0q< th=""><th>30_</th><th>Spinetoram</th><th>200</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30_	Pyridaben	200	<l0q< th=""><th>30_</th><th>Spinetoram</th><th>200</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30_	Spinetoram	200	<l0q< th=""><th>30_</th></l0q<>	30_
Spinosyn A	100	<l0q< th=""><th>30</th><th>Spinosyn D</th><th>100</th><th><l0q< th=""><th>30</th><th>Spiromesifen</th><th>100</th><th><loq< th=""><th>30</th></loq<></th></l0q<></th></l0q<>	30	Spinosyn D	100	<l0q< th=""><th>30</th><th>Spiromesifen</th><th>100</th><th><loq< th=""><th>30</th></loq<></th></l0q<>	30	Spiromesifen	100	<loq< th=""><th>30</th></loq<>	30
Spirotetramat	100	<l0q< th=""><th>30</th><th>Spiroxamine</th><th>100</th><th><l0q< th=""><th>30</th><th>Tebuconazole</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Spiroxamine	100	<l0q< th=""><th>30</th><th>Tebuconazole</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	Tebuconazole	100	<l0q< th=""><th>30_</th></l0q<>	30_
Thiacloprid	100	<l0q< th=""><th>30</th><th>Thiamethoxam</th><th>500</th><th><l0q< th=""><th>30</th><th>Trifloxystrobin</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Thiamethoxam	500	<l0q< th=""><th>30</th><th>Trifloxystrobin</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Trifloxystrobin	100	<l0q< th=""><th>30</th></l0q<>	30

(ppb) = Parts per Billion, (ppb) = $(\mu g/kg)$, , LOQ = Limit of Quantitation

Vuoli Coo

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Certificate of Analysis

Batch #: 19112V1 Sample #: AAAA313

Specimen Type: CBD/HEMP Derivative Products

Extracted From: Hemp

Description: Full Spec CBD + Organic MCT Oil

Density: .94226g/ml Method: SOP-3

Glyphosate, Paraquat, Diquat (Passed) (LCMS/MS)

Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)
Diquat	2	<l0q< th=""><th>0.5</th><th>Glyphosate</th><th>2</th><th><l0q< th=""><th>0.5</th><th>Paraquat</th><th>2</th><th><l0q< th=""><th>0.5</th></l0q<></th></l0q<></th></l0q<>	0.5	Glyphosate	2	<l0q< th=""><th>0.5</th><th>Paraquat</th><th>2</th><th><l0q< th=""><th>0.5</th></l0q<></th></l0q<>	0.5	Paraquat	2	<l0q< th=""><th>0.5</th></l0q<>	0.5

(ppm) = Parts per Million, (ppm) = $(\mu g/g)$, , LOQ = Limit of Quantitation

Pathogenic Microbiology #2 (MMTC Compliance Panel) (Passed)

(qPCR)

(qPCR)

Analyte	Remark	Analyte	Remark	Analyte	Remark
Aspergillus		Salmonella	Absence	STEC	Absence
(Flavus,					

Fumigatus, Niger,

Terreus) Absence

Listeria (Tested)

Remark

Analyte Listeria

Monoctogenes Absence

drut our

Xueli Gao Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT D.H.Sc., M.Sc., B.Sc., MT (AAB)

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

limis

Certificate of Analysis

Batch #: 19112V1 Sample #: AAAA313

Specimen Type: CBD/HEMP Derivative Products Extracted From: Hemp Description: Full Spec CBD + Organic MCT Oil **Density:** .94226g/ml **Method:** SOP-3

Filth and Foreign Material (Passed)

(Electronic Balance)

Analyte	Action Level (area ratio)	Result (area ratio)	Analyte	Action Level Result (mg/Kg) (mg/Kg)	Analyte	Action Level Result (%) (%)
Covered Area	0.25	0.000	Feces	0.5 0.000	Weight %	5 0.000

(area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, (%) = Percent

and our

Ph.D., DABT

Lab Toxicologist

Aixia Sun

Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

721 Cortaro Drive Sun City Center, FL - 33573 P: +1 (866) 762-8379 F: +1 (813) 634-4538 E: info@acslabcannabis.com http://www.acslabcannabis.com License No. 800025015 CLIA No. 10D1094068

6 of 6