

Feals 600mg Lab Tests.

At Feals, our goal is to produce the purest end product as possible. In order to do so, we test your CBD at each step of our production process.

Lot Number: 601

TEST 1

Hemp Test

Our American grow partners sign an affidavit ensuring organic farming practices are used, before their initial test to validate no traces of any 60 potentially harmful pesticides are found, and that THC levels are below the 0.3% limit required by law.

✓ Under legal limit of 0.3% THC

Pesticide Test:

PASS

TEST 2

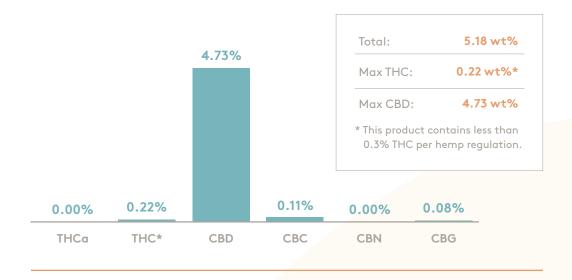
Extraction Test

Once the plants pass the partner's quality assurance, they are brought to our CO₂ extraction facility. Here, the oil is retested for the 0.3% limit and goes through a comprehensive profile and potency test to determine the plant's unique cannabinoid makeup.

Cannabinoid Profile Test

✓ Under legal limit of 0.3% THC

Heavy Metals Test: PASS


TEST 3

Final Test

Before being shipped to your door, we ensure the accuracy of our partner tests by sending each batch through a final test of quality, profile, and potency. A summary of that test is summarized below and the actual results are on the following pages.

All previous tests taken one last time

Cannabinoid Profile & Potency

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Passed

Density: .9427g/ml **Method:** SOP-3

Potency
Tested

Residual Solvents
Passed

Mycotoxins
Passed

Passed

Passed

Pathogenic Microbiology

Terpenes

Residual Solvents
Passed

Passed

Passed

Passed

Pesticides

Passed
Glyphosate, Paraquat, Diquat

Tested

CBN Total

Not Detected

Filth and Foreign Material

Tested

Passed

CBD Total 4.734%

THC Total 0.221%

Other Cannabinoids 0.150% **CBG Total** 0.075%

Total Cannabinoids 5.179%

Potency -	11 (Tested))									(HPLC)
Analyte	Result (mg/ml)	(%)	LOQ (%)	Analyte	Result (mg/ml)	(%)	LOQ (%)	Analyte	Result (mg/ml)	(%)	LOQ (%)
СВС	1.010	0.107	0.001	CBD	44.316	4.701	0.001	CBDA	0.358	0.038	0.001
CBDV	0.400	0.042	0.001	CBG	0.702	0.075	0.001	CBGA		<l0q< th=""><th>0.001</th></l0q<>	0.001
CBN		<l0q< th=""><th>0.001</th><th>Delta-8-THC</th><th></th><th><l0q< th=""><th>0.001</th><th>Delta-9-THC</th><th>2.083</th><th>0.221</th><th>0.001</th></l0q<></th></l0q<>	0.001	Delta-8-THC		<l0q< th=""><th>0.001</th><th>Delta-9-THC</th><th>2.083</th><th>0.221</th><th>0.001</th></l0q<>	0.001	Delta-9-THC	2.083	0.221	0.001
THCA-A		<l0q< th=""><th>0.001</th><th>THCV</th><th></th><th><l0q< th=""><th>0.001</th><th>Total CBD</th><th>44.630</th><th>4.734</th><th>0.001</th></l0q<></th></l0q<>	0.001	THCV		<l0q< th=""><th>0.001</th><th>Total CBD</th><th>44.630</th><th>4.734</th><th>0.001</th></l0q<>	0.001	Total CBD	44.630	4.734	0.001
Total THC	2.083	0 221	0.001								

*Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A (mg/ml) = Milligrams per Milliliter, , LOQ = Limit of Quantitation

Xueli Gao

Lab Toxicologist

Aixia Sun

Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Density: .9427g/ml **Method:** SOP-3

Residual Solvents (Extract Only) (Passed) (GC/GCMS)

Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)	Analyte	Action Level (ppm)	Result (ppm)	LOQ (ppm)
Acetone	5000	<l0q< th=""><th>87.9</th><th>Benzene</th><th>1.6</th><th><l0q< th=""><th>1.6</th><th>Chloroform</th><th>53</th><th><l0q< th=""><th>53</th></l0q<></th></l0q<></th></l0q<>	87.9	Benzene	1.6	<l0q< th=""><th>1.6</th><th>Chloroform</th><th>53</th><th><l0q< th=""><th>53</th></l0q<></th></l0q<>	1.6	Chloroform	53	<l0q< th=""><th>53</th></l0q<>	53
Ethanol	5000	<l0q< th=""><th>26.7</th><th>Hexane</th><th>60</th><th><l0q< th=""><th>36.6</th><th>I-Butane</th><th>5000</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<></th></l0q<>	26.7	Hexane	60	<l0q< th=""><th>36.6</th><th>I-Butane</th><th>5000</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<>	36.6	I-Butane	5000	<l0q< th=""><th>100</th></l0q<>	100
Isopropanol	5000	<l0q< th=""><th>52.3</th><th>Methanol</th><th>3000</th><th><l0q< th=""><th>87.9</th><th>N-Butane</th><th>5000</th><th><l0q< th=""><th>200</th></l0q<></th></l0q<></th></l0q<>	52.3	Methanol	3000	<l0q< th=""><th>87.9</th><th>N-Butane</th><th>5000</th><th><l0q< th=""><th>200</th></l0q<></th></l0q<>	87.9	N-Butane	5000	<l0q< th=""><th>200</th></l0q<>	200
Pentane	5000	<l0q< th=""><th>389.5</th><th>Toluene</th><th>890</th><th><l0q< th=""><th>38.4</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>	389.5	Toluene	890	<l0q< th=""><th>38.4</th><th></th><th></th><th></th><th></th></l0q<>	38.4				

(ppm) = Parts per Million, (ppm) = $(\mu g/g)$, , LOQ = Limit of Quantitation

Heavy Metals (Passed) (IC											
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Arsenic (As)	1500	<l0q< th=""><th>100</th><th>Cadmium (Cd)</th><th>500</th><th><l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<></th></l0q<>	100	Cadmium (Cd)	500	<l0q< th=""><th>100</th><th>Lead (Pb)</th><th>500</th><th><l0q< th=""><th>100</th></l0q<></th></l0q<>	100	Lead (Pb)	500	<l0q< th=""><th>100</th></l0q<>	100
Mercury (Hg)	3000	<l0q< th=""><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<>	100								

(ppb) = Parts per Billion, (ppb) = $(\mu g/kg)$, , LOQ = Limit of Quantitation

Mycotoxins ((Passed)									(LCN	us/Ms)
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	
Aflatoxin B1	W 1 /	<loq< th=""><th>6</th><th>Aflatoxin B2</th><th>W 1 /</th><th><loq< th=""><th>6</th><th>Aflatoxin G1</th><th>W 1 /</th><th><loq< th=""><th>6</th><th></th></loq<></th></loq<></th></loq<>	6	Aflatoxin B2	W 1 /	<loq< th=""><th>6</th><th>Aflatoxin G1</th><th>W 1 /</th><th><loq< th=""><th>6</th><th></th></loq<></th></loq<>	6	Aflatoxin G1	W 1 /	<loq< th=""><th>6</th><th></th></loq<>	6	

20 <LOQ

6 Ochratoxin A

6 Aflatoxin Total

(ppb) = Parts per Billion, (ppb) = (μg/kg), , LOQ = Limit of Quantitation

<LOQ

White Obs

Lab Toxicologist

Aixia Sun

Principal Scientist

20

<LOQ

12

Ph.D., DABT

Aflatoxin G2

D.H.Sc., M.Sc., B.Sc., MT (AAB)

mis

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Density: .9427g/ml **Method:** SOP-3

Water Activity (Passed) (AquaLab 4TE)

Analyte	Action Level (aw)	Result (aw)	
Water Activity	0.65	0.318	

(aw) = aw

Pathogenic Microbiology #3 (HEMP Compliance Panel) (Passed)

(qPCR)

Analyte Result
Listeria Absence

Pathogenic Microbiology #1 (MMTC Compliance Panel) (Passed)

(Micro Array)

					• • • • • • • • • • • • • • • • • • • •	
Analyte	Result	Analyte	Result	Analyte	Result	
Aspergillus flav	us Absence	Aspergillus fumigatus	Absence	Aspergillus nig	er Absence	
		rumgatus	Absence	————— Aspergillus terreus	Absence	
Salmonella	Absence	STEC E. Coli	Absence			

Yueli Gao

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

imis

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Density: .9427g/ml **Method:** SOP-3

Terpenes - FL	(Tested)								(GC/	(GCMS)
Analyte	Result (mg/g)	(%)	LOQ (%)	Analyte	Result (mg/g)	(%)	LOQ (%)	Analyte	Result (mg/g)	(%)	LOQ (%)
(+)-Cedrol		<loq< th=""><th>0.001</th><th>(R)-(+)-Limonene</th><th></th><th><l0q< th=""><th>0.001</th><th>3-Carene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	(R)-(+)-Limonene		<l0q< th=""><th>0.001</th><th>3-Carene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	3-Carene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Alpha-Bisabolol		<loq< th=""><th>0.001</th><th>alpha-Cedrene</th><th></th><th><l0q< th=""><th>0.001</th><th>alpha-Humulene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	alpha-Cedrene		<l0q< th=""><th>0.001</th><th>alpha-Humulene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	alpha-Humulene		<l0q< th=""><th>0.001</th></l0q<>	0.001
alpha- Phellandrene		<l0q< th=""><th>0.001</th><th>alpha-Pinene</th><th></th><th><l0q< th=""><th>0.001</th><th>alpha-Terpinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	alpha-Pinene		<l0q< th=""><th>0.001</th><th>alpha-Terpinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	alpha-Terpinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Phelianurene		<u> </u>	0.001	beta-Myrcene		<l0q< th=""><th>0.001</th><th>beta-Pinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	beta-Pinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Borneol		<loq< th=""><th>0.001</th><th>Camphene</th><th></th><th><l0q< th=""><th>0.001</th><th>Camphors</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Camphene		<l0q< th=""><th>0.001</th><th>Camphors</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Camphors		<l0q< th=""><th>0.001</th></l0q<>	0.001
Caryophyllene		-1.00	0.001	cis-Nerolidol		<l0q< th=""><th>0.001</th><th>Eucalyptol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Eucalyptol		<l0q< th=""><th>0.001</th></l0q<>	0.001
oxide		<l0q< th=""><th>0.001</th><th>Farnesene</th><th></th><th><l0q< th=""><th>0.001</th><th>Fenchone</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	Farnesene		<l0q< th=""><th>0.001</th><th>Fenchone</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Fenchone		<l0q< th=""><th>0.001</th></l0q<>	0.001
Fenchyl Alcohol		<loq< th=""><th>0.001</th><th>gamma-</th><th></th><th>4.00</th><th>0.001</th><th>Geraniol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></loq<>	0.001	gamma-		4.00	0.001	Geraniol		<l0q< th=""><th>0.001</th></l0q<>	0.001
				<u>Terpinene</u>		<l0q< th=""><th>0.001</th><th>Geranyl acetate</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Geranyl acetate		<l0q< th=""><th>0.001</th></l0q<>	0.001
Guaiol		<loq< th=""><th>0.001</th><th>Hexahydrothymol</th><th></th><th><l0q< th=""><th>0.001</th><th>Isoborneol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Hexahydrothymol		<l0q< th=""><th>0.001</th><th>Isoborneol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Isoborneol		<l0q< th=""><th>0.001</th></l0q<>	0.001
Isopulegol		<loq< th=""><th>0.001</th><th>Linalool</th><th></th><th><l0q< th=""><th>0.001</th><th>Nerol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Linalool		<l0q< th=""><th>0.001</th><th>Nerol</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Nerol		<l0q< th=""><th>0.001</th></l0q<>	0.001
Ocimene		<loq< th=""><th>0.001</th><th>Pulegone</th><th></th><th><l0q< th=""><th>0.001</th><th>Sabinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Pulegone		<l0q< th=""><th>0.001</th><th>Sabinene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Sabinene		<l0q< th=""><th>0.001</th></l0q<>	0.001
Sabinene Hydrate		<loq< th=""><th>0.001</th><th>Terpineol</th><th></th><th><l0q< th=""><th>0.001</th><th>Terpinolene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></loq<>	0.001	Terpineol		<l0q< th=""><th>0.001</th><th>Terpinolene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Terpinolene		<l0q< th=""><th>0.001</th></l0q<>	0.001
trans-beta-		1.00	0.001	trans-		-1.00	0.001	trans-Nerolidol		<l0q< th=""><th>0.001</th></l0q<>	0.001
<u>Ocimene</u>		<l0q< th=""><th>0.001</th><th>Caryophyllene</th><th></th><th><l0q< th=""><th>0.001</th><th>Valencene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<></th></l0q<>	0.001	Caryophyllene		<l0q< th=""><th>0.001</th><th>Valencene</th><th></th><th><l0q< th=""><th>0.001</th></l0q<></th></l0q<>	0.001	Valencene		<l0q< th=""><th>0.001</th></l0q<>	0.001

(mg/g) = Milligram per Gram, , LOQ = Limit of Quantitation

drut our

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

miss.

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Density: .9427g/ml **Method:** SOP-3

Pesticides (Pa	ssed)									(LCN	/IS/MS)
Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)	Analyte	Action Level (ppb)	Result (ppb)	LOQ (ppb)
Abamectin	300	<l0q< th=""><th>28.23</th><th>Acephate</th><th>3000</th><th><l0q< th=""><th>30_</th><th>Acequinocyl</th><th>2000</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<></th></l0q<>	28.23	Acephate	3000	<l0q< th=""><th>30_</th><th>Acequinocyl</th><th>2000</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<>	30_	Acequinocyl	2000	<l0q< th=""><th>48_</th></l0q<>	48_
Acetamiprid	3000	<l0q< th=""><th>30</th><th>Aldicarb</th><th>100</th><th><l0q< th=""><th>30</th><th>Azoxystrobin</th><th>3000</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<></th></l0q<>	30	Aldicarb	100	<l0q< th=""><th>30</th><th>Azoxystrobin</th><th>3000</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<>	30	Azoxystrobin	3000	<l0q< th=""><th>10</th></l0q<>	10
Bifenazate	3000	<l0q< th=""><th>30</th><th>Bifenthrin</th><th>500</th><th><l0q< th=""><th>30</th><th>Chlorfenapyr</th><th>100</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<></th></l0q<>	30	Bifenthrin	500	<l0q< th=""><th>30</th><th>Chlorfenapyr</th><th>100</th><th><l0q< th=""><th>48_</th></l0q<></th></l0q<>	30	Chlorfenapyr	100	<l0q< th=""><th>48_</th></l0q<>	48_
Chlorpyrifos	100	<l0q< th=""><th>30</th><th>Clofentezine</th><th>500</th><th><l0q< th=""><th>30</th><th>Coumaphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Clofentezine	500	<l0q< th=""><th>30</th><th>Coumaphos</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Coumaphos	100	<l0q< th=""><th>30</th></l0q<>	30
Cyfluthrin	1000	<l0q< th=""><th>30</th><th>Cypermethrin</th><th>1000</th><th><l0q< th=""><th>30</th><th><u>Daminozide</u></th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Cypermethrin	1000	<l0q< th=""><th>30</th><th><u>Daminozide</u></th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	<u>Daminozide</u>	100	<l0q< th=""><th>30_</th></l0q<>	30_
DDVP(Dichlorvos)	100	<l0q< th=""><th>30</th><th>Diazinon</th><th>200</th><th><l0q< th=""><th>30</th><th>Dimethoate</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Diazinon	200	<l0q< th=""><th>30</th><th>Dimethoate</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Dimethoate	100	<l0q< th=""><th>30</th></l0q<>	30
Dimethomorph	3000	<l0q< th=""><th>30_</th><th>Ethoprop(hos)</th><th>100</th><th><l0q< th=""><th>30</th><th>Etofenprox</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30_	Ethoprop(hos)	100	<l0q< th=""><th>30</th><th>Etofenprox</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	Etofenprox	100	<l0q< th=""><th>30_</th></l0q<>	30_
Etoxazole	1500	<l0q< th=""><th>30</th><th>Fenhexamid</th><th>3000</th><th><l0q< th=""><th>30</th><th>Fenoxycarb</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Fenhexamid	3000	<l0q< th=""><th>30</th><th>Fenoxycarb</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Fenoxycarb	100	<l0q< th=""><th>30</th></l0q<>	30
Fipronil	100	<l0q< th=""><th>30</th><th>Flonicamid</th><th>2000</th><th><l0q< th=""><th>30</th><th>Fludioxonil</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Flonicamid	2000	<l0q< th=""><th>30</th><th>Fludioxonil</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	Fludioxonil	3000	<l0q< th=""><th>30_</th></l0q<>	30_
Hexythiazox	2000	<l0q< th=""><th>30</th><th><u>Imazalil</u></th><th>100</th><th><l0q< th=""><th>30</th><th>Imidacloprid</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	<u>Imazalil</u>	100	<l0q< th=""><th>30</th><th>Imidacloprid</th><th>3000</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	Imidacloprid	3000	<l0q< th=""><th>30_</th></l0q<>	30_
Kresoxim Methyl	1000	<l0q< th=""><th>30</th><th>Malathion A</th><th>2000</th><th><l0q< th=""><th>30</th><th>Metalaxyl</th><th>3000</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<></th></l0q<>	30	Malathion A	2000	<l0q< th=""><th>30</th><th>Metalaxyl</th><th>3000</th><th><l0q< th=""><th>10</th></l0q<></th></l0q<>	30	Metalaxyl	3000	<l0q< th=""><th>10</th></l0q<>	10
Methiocarb	100	<l0q< th=""><th>30</th><th>Methomyl</th><th>100</th><th><l0q< th=""><th>30</th><th>Mevinphos</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<></th></l0q<>	30	Methomyl	100	<l0q< th=""><th>30</th><th>Mevinphos</th><th>100</th><th><l0q< th=""><th>30_</th></l0q<></th></l0q<>	30	Mevinphos	100	<l0q< th=""><th>30_</th></l0q<>	30_
Myclobutanil	3000	<l0q< th=""><th>30</th><th>Naled</th><th>500</th><th><l0q< th=""><th>30</th><th>Oxamyl</th><th>500</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Naled	500	<l0q< th=""><th>30</th><th>Oxamyl</th><th>500</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Oxamyl	500	<l0q< th=""><th>30</th></l0q<>	30
<u>Paclobutrazol</u>	100	<l0q< th=""><th>30</th><th>Parathion-methyl</th><th>100</th><th><l0q< th=""><th>48</th><th>Pentachloronitrober ene</th><th>1z- 200</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Parathion-methyl	100	<l0q< th=""><th>48</th><th>Pentachloronitrober ene</th><th>1z- 200</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	48	Pentachloronitrober ene	1 z- 200	<l0q< th=""><th>30</th></l0q<>	30
Permethrin	1000	<l0q< th=""><th>30</th><th>Phosmet</th><th>200</th><th><l0q< th=""><th>30</th><th>Piperonylbutoxide</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Phosmet	200	<l0q< th=""><th>30</th><th>Piperonylbutoxide</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Piperonylbutoxide	3000	<l0q< th=""><th>30</th></l0q<>	30
Prallethrin	400	<l0q< th=""><th>30</th><th>Propiconazole</th><th>1000</th><th><l0q< th=""><th>30</th><th>Propoxur</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Propiconazole	1000	<l0q< th=""><th>30</th><th>Propoxur</th><th>100</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Propoxur	100	<l0q< th=""><th>30</th></l0q<>	30
Pyrethrins	1000	<l0q< th=""><th>30</th><th>Pyridaben</th><th>3000</th><th><l0q< th=""><th>30</th><th>Spinetoram</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Pyridaben	3000	<l0q< th=""><th>30</th><th>Spinetoram</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Spinetoram	3000	<l0q< th=""><th>30</th></l0q<>	30
Spinosyn A	3000	<l0q< th=""><th>30</th><th>Spinosyn D</th><th>3000</th><th><l0q< th=""><th>30</th><th>Spiromesifen</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Spinosyn D	3000	<l0q< th=""><th>30</th><th>Spiromesifen</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Spiromesifen	3000	<l0q< th=""><th>30</th></l0q<>	30
Spirotetramat	3000	<l0q< th=""><th>30</th><th>Spiroxamine</th><th>100</th><th><l0q< th=""><th>30</th><th>Tebuconazole</th><th>1000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Spiroxamine	100	<l0q< th=""><th>30</th><th>Tebuconazole</th><th>1000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Tebuconazole	1000	<l0q< th=""><th>30</th></l0q<>	30
Thiacloprid	100	<l0q< th=""><th>30</th><th>Thiamethoxam</th><th>1000</th><th><l0q< th=""><th>30</th><th>Trifloxystrobin</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<></th></l0q<>	30	Thiamethoxam	1000	<l0q< th=""><th>30</th><th>Trifloxystrobin</th><th>3000</th><th><l0q< th=""><th>30</th></l0q<></th></l0q<>	30	Trifloxystrobin	3000	<l0q< th=""><th>30</th></l0q<>	30

(ppb) = Parts per Billion, (ppb) = (µg/kg), , LOQ = Limit of Quantitation

Xueli Gao

Lab Toxicologist

Aixia Sun

Principal Scientist

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

mis

Certificate of Analysis

Batch #: 601

Sample #: AAAA987

Specimen Type: CBD/HEMP Derivative Products (Ingestion)

Extracted From: Hemp

Description: Feals600 Hemp Extract + Organic MCT

Initial Gross Weight: 41364mg

Density: .9427g/ml **Method:** SOP-3

Glyphosate, Paraquat, Diquat (Tested)

(LCMS/MS)

Analyte	Result (ppm)	LOQ (ppm)	Analyte	Result (ppm)	LOQ (ppm)	Analyte	Result (ppm)	LOQ (ppm)	
Diquat	<l0q< th=""><th>24</th><th>Glyphosate</th><th><l0q< th=""><th>24</th><th>Paraquat</th><th><l0q< th=""><th>24</th><th></th></l0q<></th></l0q<></th></l0q<>	24	Glyphosate	<l0q< th=""><th>24</th><th>Paraquat</th><th><l0q< th=""><th>24</th><th></th></l0q<></th></l0q<>	24	Paraquat	<l0q< th=""><th>24</th><th></th></l0q<>	24	

(ppm) = Parts per Million, (ppm) = $(\mu g/g)$, , LOQ = Limit of Quantitation

Filth and Foreign Material (Passed)

(Electronic Balance)

Analyte	Action Level Result (mg/Kg) (mg/Kg)	
Feces	0.5 0.000	

(mg/Kg) = Milligram per Kilogram, (area ratio) = Area Ratio, (%) = Percent

and our

li Gao Lab Toxicologist

oxicologist Aixia S

Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

miss.

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Ph.D., DABT